

Energy Technology Perspectives 2017 Catalysing Energy Technology Transformations

Dr. Uwe Remme, IEA

wholeSEM Annual Conference, 3 July 2017, London

Scenarios and Modelling

• Where do we need to go?

Statistics and trends

• Where are we today?

Technology Roadmaps

• How do we get there?

Technology Roadmap Hydrogen and had Calls

iea

Global CO₂ emissions flat for 3 years – an emerging trend?

IEA analysis shows that global CO₂ emissions remained flat in 2016 for the third year in a row, even though the global economy grew, led by emission declines in the US and China.

Technology area contribution to global cumulative CO₂ reductions

Pushing energy technology to achieve carbon neutrality by 2060 could meet the mid-point of the range of ambitions expressed in Paris.

Gt CO₂ cumulative reductions in 2060

The potential of clean energy technology remains under-utilised

Recent progress in some clean energy areas is promising, but many technologies still need a strong push to achieve their full potential and deliver a sustainable energy future.

IEA energy modelling and scenarios

 Forecasts (next 5 years) : Medium-term Market Reports

- ENERGY EFFECIENCY Market Report
- Market-based scenarios (out to 2040): World Energy Outlook
- Long-term planning scenarios (out to 2060): Energy Technology Perspectives

System Integration: Analysis of flexibility resources/market design for vRE

ETP modelling framework

- Four soft-linked models based on simulation and optimisation modelling methodologies
- Model horizon: 2014-2060 in 5 year periods
- World divided in 28-42 model regions/countries depending on sector
- For power sector linkage with TIMES dispatch model for selected regions to analyse electricity system flexibility

Decarbonising electricity

Renewables dominate electricity generation in the 2DS and B2DS. Thanks to bioenergy with CCS, the average global CO₂ intensity falls below zero after 2050.

Systems Integration is essential for a sustainable energy future

We need to move away from a one-directional energy delivery philosophy

iea

Systems Integration is essential for a sustainable energy future

We need to move away from a one-directional energy delivery philosophy to a digitally-enhanced, multidirectional and integrated system that requires long-term planning for services delivery.

Systems Integration is essential for a sustainable energy future

We need to move away from a one-directional energy delivery philosophy to a digitally-enhanced, multidirectional and integrated system that requires long-term planning for services delivery.

Spatial analysis of renewable potentials: Example onshore wind

Analysis of onshore wind potential

• Onshore wind potential differentiated by capacity factor, distance to cities and population size

Spatial analysis of renewable potentials: Onshore wind in China

The transportation sector already experiences technological change, but won't shed its oil dependency without assertive policies.

Optimising the use of sustainable biomass

Around 145 EJ of sustainable bioenergy is available by 2060 in IEA decarbonisation scenarios, but gets used differently between the 2DS and the B2DS.

Conclusions

- iea
- Early signs point to changes in energy trajectories, helped by policies and technologies, but progress is too slow
- An integrated systems approach considering all technology options must be implemented now to accelerate progress
- Each country should define its own transition path and scaleup its RD&D and deployment support accordingly
- Achieving carbon neutrality by 2060 would require unprecedented technology policies and investments
- Innovation can deliver, but policies must consider the full technology cycle, and collaborative approaches can help

Explore the data behind ETP

www.iea.org

